The cross product of 2 vectors is calculated with the determinant
#| (veci,vecj,veck), (d,e,f), (g,h,i) | #
where #veca=〈d,e,f〉# and #vecb=〈g,h,i〉# are the 2 vectors
Here, we have #veca=〈7,2,6〉# and #vecb=〈-3,5,-6〉#
Therefore,
#| (veci,vecj,veck), (7,2,6), (-3,5,-6) | #
#=veci| (2,6), (5,-6) | -vecj| (7,6), (-3,-6) | +veck| (7,2), (-3,5) | #
#=veci((2)*(-6)-(6)*(5))-vecj((7)*(-6)-(6)*(-3))+veck((7)*(5)-(2)*(-3))#
#=〈-42,24,41〉=vecc#
Verification by doing 2 dot products
#〈-42,24,41〉.〈7,2,6〉=(-42)*(7)+(24)*(2)+(41)*(6)=0#
#〈-42,24,41〉.〈-3,5,-6〉=(-42)*(-3)+(24)*(5)+(41)*(-6)=0#
So,
#vecc# is perpendicular to #veca# and #vecb#