What is the definite integral of 3 sin2x from x = 0 to x =2?

1 Answer
Sep 25, 2014

int_0^2 3sin(2x)dx

Factor out the constant

3int_0^2 sin(2x)dx

Make a substitution

Let u=2x

du=2 dx

(du)/2=(2 dx)/2

(du)/2=dx

3int sin(u)*(du)/2

=3*1/2int sin(u)du

=3/2int sin(u)du

Recalculate the boundaries

Upper Bound

u=2x=2(2)=4

Lower Bound

u=2x=2(0)=0

3/2int_0^4 sin(u)du

=3/2[-cos(u)]_0^4

=3/2[-cos(4)-(-cos(0))]

=3/2[-cos(4)-(-1)]

=3/2[-cos(4)+1]

=[(-3cos(4)+3)/2]

=2.480465431 sq units