What is the derivative of 10log_4x/x10log4xx?

2 Answers
Nov 18, 2017

Derivative is (10-10lnx)/(x^2ln4)1010lnxx2ln4

Explanation:

As log_4x=lnx/ln4log4x=lnxln4, let us find the derivative of 10/ln4*lnx/x10ln4lnxx, using quotient formula for f(x)=(g(x))/(h(x))f(x)=g(x)h(x)

(df)/(dx)=((dg)/(dx)xxh(x)-(dh)/(dx)xxg(x))/(h(x))^2dfdx=dgdx×h(x)dhdx×g(x)(h(x))2

Hence d/(dx)10/ln4*lnx/xddx10ln4lnxx

= 10/ln4*(1/x*x-1xxlnx)/x^210ln41xx1×lnxx2

= 10/ln4*(1-lnx)/x^210ln41lnxx2

= (10-10lnx)/(x^2ln4)1010lnxx2ln4

Nov 18, 2017

(10(1/(ln4)-log_4x))/x^210(1ln4log4x)x2

Explanation:

"differentiate using the "color(blue)"quotient rule"differentiate using the quotient rule

"given "y=(g(x))/(h(x))" then "given y=g(x)h(x) then

dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr"quotient rule"

g(x)=10log_4xrArrg'(x)=10xx1/(xln4)

h(x)=xrArrh'(x)=1

rArrdy/dx=(x .10/(xln4)-10log_4x)/(x^2)

color(white)(rArrdy/dx)=(10(1/(ln4)-log_4x))/x^2