What is the derivative of #(4x)^3 * (2x)^6#? Calculus Basic Differentiation Rules Chain Rule 1 Answer Bdub Nov 1, 2016 #y'=36864x^8# Explanation: #y=(4x)^3(2x)^6# #y=4^3 x^3*2^6 x^6# #y=4096x^9# #y'=36864x^8# OR Use product rule and chain rule #f=(4x)^3, g=(2x)^6# #f'=3(4x)^2 *4, g'=6(2x)^5*2# #y'=fg'+gf'# #y'=12(4x)^3(2x^5)+12(4x)^2(2x)^6# #y'=12*4^3x^3*2^5x^5+12*4^2x^2*2^6x^6# #y'=24576x^8+12288x^8=36864x^8# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 5270 views around the world You can reuse this answer Creative Commons License