Start by rewriting your function like this
#y = (4x^color(red)(cancel(color(black)(8))))/(8color(red)(cancel(color(black)(x^4)))) - x^(1/2)/(8x^4)#
#y = 1/2x^4 - 1/8 * x^(-7/2)#
Now you can use the power rule to differentiate #y#
#y = 1/2[d/dx(x^4)] - 1/8 d/dx(x^(-7/2))#
#y = 1/color(red)(cancel(color(black)(2))) * color(red)(cancel(color(black)(4))) x^3 - 1/8 * (-7/2) * x^(-9/2)#
#y = 2x^3 + 7/16x^(-9/2)#
This can be rewritten as
#y^' = (x^(-9/2) * (16 * 2x^(15/2) + 7))/16 = color(green)(1/16 * (32x^(15/2) + 7) * x^(-9/2))#