What is the derivative of e^(2xy)e2xy?

1 Answer
Apr 6, 2017

d/dx(e^(2xy))ddx(e2xy) or d/dt(e^(2xy))ddt(e2xy)

Explanation:

With respect to xx
d/dx(e^(2xy)) = (e^(2xy)) d/dx(2xy) ddx(e2xy)=(e2xy)ddx(2xy)

= (e^(2xy)) (2y+2x dy/dx)=(e2xy)(2y+2xdydx)

With respect to tt
d/dt(e^(2xy)) = (e^(2xy)) d/dt(2xy) ddt(e2xy)=(e2xy)ddt(2xy)

= (e^(2xy)) (2ydx/dt + 2x dy/dx)=(e2xy)(2ydxdt+2xdydx)