What is the derivative of f(x)=(cos^-1(x))/xf(x)=cos−1(x)x ?
1 Answer
Jul 28, 2014
f'(x)=-1/(xsqrt(1-x^2))-(cos^-1x)/x^2
Using Quotient Rule, which is
y=f(x)/g(x) , theny'=(f'(x)g(x)−f(x)g'(x))/(g(x))^2
Applying this for given problem, which is
f'(x)=((cos^-1x)'(x)-(cos^-1x)(x)')/x^2
f'(x)=(-1/sqrt(1-x^2)*x-cos^-1x)/x^2
f'(x)=-1/(xsqrt(1-x^2))-(cos^-1x)/x^2 , where-1 <x <1