What is the derivative of #log_10((x^2-1)/x)#?

1 Answer
Mar 31, 2017

see below

Explanation:

Use the following Properties of Logarithm to expand the problem before taking derivatives.

  1. #color(red)(log_b(xy)=log_bx+log_by#
  2. #color(red)(log_b(x/y)=log_bx-log_by#
  3. #color(red)(log_b x^n =n log_bx#

Then use the formula #color(red)(d/dx(log_bf(x))=1/(f(x)ln b) * f'(x)# to find the derivative

#y=log_10((x^2-1)/x)#

#=log_10(x^2-1)-log_10 x#

#color(blue)(y'=1/((x^2-1)ln10)*2x-1/(xln10)#

#color(blue)(y'=(2x)/((x^2-1)ln10)-1/(xln10)#