What is the derivative of #sin(pi*x)#?

2 Answers
Oct 18, 2015

#picospix#

Explanation:

#d/dxsinpix=picospix#

Feb 17, 2017

#dy/dx" "=" "pixxcos(u)" "=" "picos(pix)#

These days they prefer the notation:

#f^'(x)=picos(pix)# or

Explanation:

#color(blue)("Step 1")#

Set #u=pix#

#pi# is a constant so #(du)/(dx)=pi#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Step 2")#

Set #y=sin(pix)" "->" "y=sin(u)#

Just accept that #d/(du) (sin(u))=cos(u)#

So #dy/(du)=cos(u)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Step 3")#

However; #" "(du)/dx xx dy/(du) " "=" " dy/dxxx(du)/(du)" " =" " dy/dx#

So by substitution we have:

#dy/dx" "=" "pixxcos(u)" "=" "picos(pix)#