What is the derivative of sin (x/2)sin(x2)?

2 Answers
Apr 18, 2018

d/dxsin(x/2)=1/2cos(x/2)ddxsin(x2)=12cos(x2)

Explanation:

The Chain Rule, when applied to the sine, tells us that

d/dxsin(u)=cosu*(du)/dxddxsin(u)=cosududx, where uu is some function in terms of x.x. Here, we see u=x/2,u=x2, so

d/dxsin(x/2)=cos(x/2)*d/dx(x/2)ddxsin(x2)=cos(x2)ddx(x2)

d/dx(x/2)=1/2,ddx(x2)=12, so we end up with

d/dxsin(x/2)=1/2cos(x/2)ddxsin(x2)=12cos(x2)

Apr 18, 2018

cos(x/2)/2cos(x2)2

Explanation:

use chain rule:
d/dx(sin(x/2))=cos(x/2)*d/dx(x/2)ddx(sin(x2))=cos(x2)ddx(x2)

(note that derivative of sinxsinx is cosxcosx)

cos(x/2)*(1/2)cos(x2)(12)
=cos(x/2)/2=cos(x2)2