Given: y = (cos(e^(x^5sinx)))^(1/2)y=(cos(ex5sinx))12
Use the chain rule to differentiate.
Derivative rules needed:
Power rule: " "(u^n)' = n u^(n-1)
(cos u)' = -u' sin u; " "(e^u)' = u' e^u
product rule: " "(uv)' = uv' + v u'
Start out with the power rule where u = cos(e^(x^5sinx)); n = 1/2:
y' = 1/2(cos(e^(x^5sinx)))^(-1/2) * (du)/(dx)(cos u)
Let u = e^(x^5sinx):
y' = 1/2(cos(e^(x^5sinx)))^(-1/2) (-sin(e^(x^5 sinx)))* (du)/(dx)(e^u)
Let u = x^5sinx:
y' = 1/2(cos(e^(x^5sinx)))^(-1/2) (-sin(e^(x^5 sinx)))e^(x^5 sinx)* d/(dx) (x^5sinx)
Use the product rule, u = x^5, u' = 5x^4, v = sinx, v' = cos x:
y' = 1/2(cos(e^(x^5sinx)))^(-1/2) (-sin(e^(x^5 sinx)))e^(x^5 sinx) (x^5 cos x + 5 x^4 sin x)
Rearrange and factor (GCF = x^4):
y' = (-x^4e^(x^5sinx)sin(e^(x^5sinx))(xcosx + 5sinx))/(2sqrt(cos(e^(x^5sinx)))