What is the derivative of this function #(cos x) / (1-sinx)#? Calculus Differentiating Trigonometric Functions Intuitive Approach to the derivative of y=sin(x) 1 Answer Ratnaker Mehta Oct 22, 2017 # secx(secx+tanx).# Explanation: Let, #y=cosx/(1-sinx).# #:. y=cosx/(1-sinx)xx(1+sinx)/(1+sinx),# #=(cosx(1+sinx))/(1-sin^2x)=(cosx(1+sinx))/cos^2x.# #:. y=(1+sinx)/cosx=1/cosx+sinx/cosx, i.e., # # y=secx+tanx.# #rArr dy/dx=secxtanx+sec^2x=secx(tanx+secx).# Answer link Related questions What is the derivative of #-sin(x)#? What is the derivative of #sin(2x)#? How do I find the derivative of #y=sin(2x) - 2sin(x)#? How do you find the second derivative of #y=2sin3x-5sin6x#? How do you compute #d/dx 3sinh(3/x)#? How do you find the derivative #y=xsinx + cosx#? What is the derivative of #sin(x^2y^2)#? What is #f'(-pi/3)# when you are given #f(x)=sin^7(x)#? How do you find the fist and second derivative of #pi*sin(pix)#? If f(x)= 2x sin(x) cos(x), how do you find f'(x)? See all questions in Intuitive Approach to the derivative of y=sin(x) Impact of this question 1611 views around the world You can reuse this answer Creative Commons License