What is the derivative of this function e ^ sin (2x)?

2 Answers
May 7, 2018

d/dx (e^sin(2x)) = 2e^sin(2x)cos(2x)

Explanation:

Using the chain rule with y=sint and t= 2x we have:

e^sin(2x) = e^y

d/dx (e^sin(2x)) = d/dy (e^y) * dy/dx = e^y * dy/dx

and similary:

dy/dx = d/dx sint = d/dt sint * (dt)/dx = cost *dt/dx

and finally:

dt/dx = d/dx (2x) = 2

Putting it together:

d/dx (e^sin(2x)) = 2e^sin(2x)cos(2x)

May 7, 2018

2e^(sin2x)cos2x

Explanation:

Given: e^(sin2x).

Apply the chain rule, which states that,

dy/dx=dy/(du)*(du)/dx

Let u=sin2x, then we must find (du)/dx.

Again, use the chain rule. Let z=2x,:.(dz)/dx=2.

Then y=sinz,dy/(dz)=cosz.

Combine to get: cosz*2=2cosz.

Substitute back z=2x to get:

=2cos(2x)

Now, we go back to the original derivative.

From here, y=e^u,:.dy/(du)=e^u, and now we can combine our results from the previous findings, where (du)/dx=2cos2x.

:.dy/dx=e^u*2cos2x

=2e^ucos2x

Substitute back u=sin2x to get:

=2e^(sin2x)cos2x