What is the derivative of this function f(x)=1/sinx?

2 Answers
May 28, 2018

The answer is =-cosx/sin^2x

Explanation:

The function is

f(x)=1/sinx=(sinx)^-1

The derivative is

f'(x)=((sinx)^-1)'=(-(sinx)^-2)*cosx

=-cosx/sin^2x

May 28, 2018

-cotxcscx.

Explanation:

We will use the Quotient Rule (QR) to find f'(x).

QR : f(x)=g(x)/(h(x))," then, "f'(x)={h(x)g'(x)-g(x)h'(x)}/[h(x)]^2.

:. f(x)=1/sinx rArr f'(x)={sinx*d/dx(1)-1*d/dx(sinx)}/[sinx]^2,

={sinx*0-1*cosx}/sin^2x,

=-cosx/sin^2x,

=-cosx/sinx*1/sinx,

=-cotxcscx.