What is the derivative of this function y = x sin (5/x)y=xsin(5x)?

1 Answer
May 16, 2017

dy/dx=sin(5/x)-5/xcos(5/x)dydx=sin(5x)5xcos(5x)

Explanation:

First we need the product rule, which states that d/dx(uv)=((du)/dx)v+u((dv)/dx)ddx(uv)=(dudx)v+u(dvdx). Thus:

dy/dx=(d/dxx)sin(5/x)+x(d/dxsin(5/x))dydx=(ddxx)sin(5x)+x(ddxsin(5x))

Here, d/dxx=1ddxx=1.

To figure out d/dxsin(5/x)ddxsin(5x), we need the chain rule since we have a function inside another function. Knowing that d/dxsin(x)=cos(x)ddxsin(x)=cos(x), we see that through the chain rule, d/dxsin(u)=cos(u)((du)/dx)ddxsin(u)=cos(u)(dudx).

Then:

dy/dx=sin(5/x)+xcos(5/x)(d/dx(5/x))dydx=sin(5x)+xcos(5x)(ddx(5x))

Note that d/dx5/x=d/dx5x^-1=-5x^-2ddx5x=ddx5x1=5x2 through the power rule:

dy/dx=sin(5/x)+xcos(5/x)*(-5/x^2)dydx=sin(5x)+xcos(5x)(5x2)

dy/dx=sin(5/x)-5/xcos(5/x)dydx=sin(5x)5xcos(5x)