What is the derivative of this function y = x sin (5/x)y=xsin(5x)?
1 Answer
May 16, 2017
Explanation:
First we need the product rule, which states that
dy/dx=(d/dxx)sin(5/x)+x(d/dxsin(5/x))dydx=(ddxx)sin(5x)+x(ddxsin(5x))
Here,
To figure out
Then:
dy/dx=sin(5/x)+xcos(5/x)(d/dx(5/x))dydx=sin(5x)+xcos(5x)(ddx(5x))
Note that
dy/dx=sin(5/x)+xcos(5/x)*(-5/x^2)dydx=sin(5x)+xcos(5x)⋅(−5x2)
dy/dx=sin(5/x)-5/xcos(5/x)dydx=sin(5x)−5xcos(5x)