What is the derivative of x^x?

1 Answer
Mar 5, 2018

dy/dx=x^x(ln(x)+1)

Explanation:

We have:

y=x^x Let's take the natural log on both sides.

ln(y)=ln(x^x) Using the fact that log_a(b^c)=clog_a(b),

=>ln(y)=xln(x) Apply d/dx on both sides.

=>d/dx(ln(y))=d/dx(xln(x))

The chain rule:

If f(x)=g(h(x)), then f'(x)=g'(h(x))*h'(x)

Power rule:

d/dx(x^n)=nx^(n-1) if n is a constant.

Also, d/dx(lnx)=1/x

Lastly, the product rule:

If f(x)=g(x)*h(x), then f'(x)=g'(x)*h(x)+g(x)*h'(x)

We have:

=>dy/dx*1/y=d/dx(x)*ln(x)+x*d/dx(ln(x))

=>dy/dx*1/y=1*ln(x)+x*1/x

=>dy/dx*1/y=ln(x)+cancelx*1/cancelx
(Don't worry about when x=0, because ln(0) is undefined)

=>dy/dx*1/y=ln(x)+1

=>dy/dx=y(ln(x)+1)

Now, since y=x^x , we can substitute y.

=>dy/dx=x^x(ln(x)+1)