What is the derivative of #xe^(-kx)#?
1 Answer
Dec 22, 2014
Answer :
#y'=e^(-kx)(1-k*x)# Solution :
Suppose :
#y=f(x)*g(x)# Using Product Rule which is,
#y'=f(x)*g'(x)+f'(x)*g(x)# Similarly following for the given problem,
#y=x*e^(-kx)# Differentiating with respect to
#x# ,
#y'=x*(e^(-kx))'+e^(-kx)*(x)'#
#y'=x*(-k*e^(-kx))+e^(-kx)#
#y'=e^(-kx)(1-k*x)#