What is the derivative of #y=5^(x-2)#?

1 Answer
Sep 18, 2016

#dy/dx= ln5 xx 5^(x- 2)#

Explanation:

Take the natural logarithm of both sides.

#lny = ln(5^(x- 2))#

Now, use the rule #ln(a^n) = nlna#

#lny = (x - 2)ln5#

#d/dx(lny) = d/dx((x - 2)(ln5))#

Differentiating the left-hand side using the rule #d/dx(lnx) = 1/x# and implicit differentiation and the right-hand side using the product rule we have:

#1/y(dy/dx) = 1(ln5) + (x - 2)0#

#1/y(dy/dx) = ln5#

#dy/dx = ln5/(1/y)#

#dy/dx= yln5#

#dy/dx= ln5 xx 5^(x- 2)#, since #y = 5^(x- 2)#

Hopefully this helps!