What is the derivative of y=(sinx)^xy=(sinx)x?
3 Answers
Explanation:
Use logarithmic differentiation.
Differentiate implicitely: (Use the product rule and the chain ruel)
So, we have:
Solve for
Explanation:
The easiest way to see this is using:
(sinx)^x=e^(ln((sinx)^x))=e^(xln(sinx))(sinx)x=eln((sinx)x)=exln(sinx)
Taking the derivative of this gives:
d/dx(sinx)^x=(d/dxxln(sinx))e^(xln(sinx))ddx(sinx)x=(ddxxln(sinx))exln(sinx)
=(ln(sinx)+xd/dx(ln(sinx)))(sinx)^x=(ln(sinx)+xddx(ln(sinx)))(sinx)x
=(ln(sinx)+x(d/dxsinx)/sinx)(sinx)^x=(ln(sinx)+xddxsinxsinx)(sinx)x
=(ln(sinx)+xcosx/sinx)(sinx)^x=(ln(sinx)+xcosxsinx)(sinx)x
=(ln(sinx)+xcotx)(sinx)^x=(ln(sinx)+xcotx)(sinx)x
Now we must note that if
However, when we analyse the behaviour of the function around the
(sinx)^x(sinx)x approaches 0
then:
ln((sinx)^x)ln((sinx)x) will approach-oo−∞
so:
e^(ln((sinx)^x))eln((sinx)x) will approach 0 as well
Furthermore, we note that if
More generally...