What is the derivative of y=(sinx)^xy=(sinx)x?

3 Answers
Jul 27, 2015

dy/dx = (ln(sinx)+xcotx)(sinx)^xdydx=(ln(sinx)+xcotx)(sinx)x

Explanation:

Use logarithmic differentiation.

y = (sinx)^xy=(sinx)x

lny = ln((sinx)^x) = xln(sinx)lny=ln((sinx)x)=xln(sinx) (Use properties of lnln)

Differentiate implicitely: (Use the product rule and the chain ruel)

1/y dy/dx = 1ln(sinx) + x [1/sinx cosx]1ydydx=1ln(sinx)+x[1sinxcosx]

So, we have:

1/y dy/dx = ln(sinx) + x cotx1ydydx=ln(sinx)+xcotx

Solve for dy/dxdydx by multiplying by y = (sinx)^xy=(sinx)x,

dy/dx = (ln(sinx)+xcotx)(sinx)^xdydx=(ln(sinx)+xcotx)(sinx)x

Jul 27, 2015

d/dx(sinx)^x=(ln(sinx)+xcotx)(sinx)^xddx(sinx)x=(ln(sinx)+xcotx)(sinx)x

Explanation:

The easiest way to see this is using:

(sinx)^x=e^(ln((sinx)^x))=e^(xln(sinx))(sinx)x=eln((sinx)x)=exln(sinx)

Taking the derivative of this gives:

d/dx(sinx)^x=(d/dxxln(sinx))e^(xln(sinx))ddx(sinx)x=(ddxxln(sinx))exln(sinx)

=(ln(sinx)+xd/dx(ln(sinx)))(sinx)^x=(ln(sinx)+xddx(ln(sinx)))(sinx)x

=(ln(sinx)+x(d/dxsinx)/sinx)(sinx)^x=(ln(sinx)+xddxsinxsinx)(sinx)x

=(ln(sinx)+xcosx/sinx)(sinx)^x=(ln(sinx)+xcosxsinx)(sinx)x

=(ln(sinx)+xcotx)(sinx)^x=(ln(sinx)+xcotx)(sinx)x

Now we must note that if (sinx)^x=0(sinx)x=0, ln((sinx)^x)ln((sinx)x) is undefined.

However, when we analyse the behaviour of the function around the xx's for which this holds, we find that the function behaves well enough for this to work, because, if:

(sinx)^x(sinx)x approaches 0

then:

ln((sinx)^x)ln((sinx)x) will approach -oo

so:

e^(ln((sinx)^x))eln((sinx)x) will approach 0 as well

Furthermore, we note that if sinx<0sinx<0, ln((sinx)^x)ln((sinx)x) will be a complex number; however, all the algebra and calculus that we have used work in the complex plane as well, so this is not a problem.

Aug 14, 2017

More generally...

Explanation:

d/dx [f(x)^g(x)] = [g(x)/f(x)f'(x) + g'(x)ln(f(x))][f(x)^g(x)]