What is the distance between # (2, 3, 5) # and # (2, 7, 4) #?
1 Answer
Explanation:
The distance between
#d = sqrt((x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2)#
So in our case:
#d = sqrt((2-2)^2+(7-3)^2+(4-5)^2)#
#=sqrt(0+16+1)=sqrt(17) ~~ 4.123#
Distance formula for
Here's how to derive the distance formula for
Given points
#(x_1, y_1, z_1)# ,#(x_2, y_1, z_1)# ,#(x_2, y_2, z_1)#
This is a right angled triangle with legs:
#(x_1, y_1, z_1) (x_2, y_1, z_1)# of length#abs(x_2-x_1)#
#(x_2, y_1, z_1) (x_2, y_2, z_1)# of length#abs(y_2-y_1)#
and hypotenuse:
#(x_1, y_1, z_1) (x_2, y_2, z_1)# of length#sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
Next consider the triangle with vertices:
#(x_1, y_1, z_1)# ,#(x_2, y_2, z_1)# ,#(x_2, y_2, z_2)#
This is a right angled triangle with legs:
#(x_1, y_1, z_1) (x_2, y_2, z_1)# of length#sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#(x_2, y_2, z_1) (x_2, y_2, z_2)# of length#abs(z_2-z_1)#
and hypotenuse:
#(x_1, y_1, z_1) (x_1, y_2, z_2)# of length:
#sqrt((sqrt((x_2-x_1)^2+(y_2-y_1)^2))^2+(z_2-z_1)^2)#
#=sqrt((x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2)#