What is the domain and range of sqrtcos(x^2)cos(x2)?

1 Answer
Jul 4, 2018

x in ...U [ -sqrt((5pi)/2), -sqrt((3pi)/2) ] U [ -sqrt(pi/2), sqrt(pi/2) ] U [ sqrt((3pi)/2), sqrt((5pi)/2) ] U [ sqrt((7pi)/2), sqrt((9pi)/2) ] U ... and y in [ 0, 1 ]

Explanation:

0 <= cos ( x^2 ) <= 1, and so,

0 <= y = sqrt cos (x^2 ) <= 1. Inversely,

x = +- sqrt( abs( cos^(-1)y^2)), +- sqrt(2kpi +- cos^(-1)y^2),

k = 1, 2, 3, ..., avoiding negatives under the radical sign.

So,

x in ...U [ -sqrt((9pi)/2), -sqrt((7pi)/2) ] U

[ -sqrt((5pi)/2), sqrt((3pi)/2) ] U [ -sqrt(pi/2), sqrt(pi/2) ]

U [ sqrt((3pi)/2), sqrt((5pi)/2) ] U [sqrt((7pi)/2), sqrt((9pi)/2) ]U...

See the phenomenal graph.
graph{y - sqrt(cos(x^2))=0[-10 10 -1 9]}