What is the dot product of #<5,-3,6 ># and #<-8,2,-9 >#?

1 Answer
Jan 6, 2017

#-100#

Explanation:

the dot product of two vectors

#veca=((a_1),(a_2),(a_3)), &vecb=((b_1),(b_2),(b_3)), #

can be calculated by the result

#veca.vecb=a_1b_1+a_2b_2+a_3b_3#

in this case we have

#veca=((5),(-3),(6)), &vecb=((-8),(2),(-9)), #

#veca.vecb=5xx(-8)+(-3)xx2+6xx(-9)#

#veca.vecb=-40-6-54=-100#