What is the equation of the line tangent to # f(x)=1/sqrt(x^2+3x+6) # at # x=-1 #?
1 Answer
Dec 15, 2016
Explanation:
Start by finding the y-coordinate of intersection.
#f(-1) = 1/sqrt((-1)^2 + 3(-1) + 6)#
#f(-1) = 1/sqrt(4)#
#f(-1) = 1/2#
Now, differentiate.
#f(x) = 1/sqrt(x^2 + 3x + 6)#
#f(x) = 1/(x^2 + 3x + 6)^(1/2)#
#f(x) = (x^2 + 3x + 6)^(-1/2)#
Let
#dy/dx = dy/(du) xx (du)/dx#
#dy/dx= -1/2u^(-3/2) xx (2x + 3)#
#dy/dx= -(2x + 3)/(2(x^2 + 3x + 6)^(3/2)#
The slope at
#dy/dx|_(x = -1) = -(2(-1) + 3)/(2(-1^2 + 3(-1) + 6)^(3/2))#
#dy/dx|_(x= -1) = -1/16#
The equation of the tangent line is therefore:
#y - y_1 = m(x- x_1)#
#y - 1/2 =-1/16(x - (-1))#
#y - 1/2 = -1/16x - 1/16#
#y = -1/16x + 7/16#
Hopefully this helps!