What is the equation of the tangent line of #f(x) =sin^2x-sin2x# at # x = pi/4#?

1 Answer

The Tangent Line:

#y=x-(pi+2)/4#

Explanation:

from the given function #f(x)=sin^2 x - sin 2x# and the given value of abscissa #x=pi/4#, find the value of y.

look for the value of #f(pi/4)#

#f(pi/4)=(sin (pi/4))^2 - sin 2(pi/4)=(sin (pi/4))^2 - sin (pi/2)#

it follows;

#f(pi/4)=(1/sqrt(2))^2-1#

and #f(pi/4)=1/2-1#

#f(pi/4)=-1/2#

the required point is at #(pi/4, -1/2)#

The slope m is now required to solve for the tangent line . Find the first derivative of the given function #f(x)# and then evaluate it at #x=pi/4# to obtain the value of m.

The first derivative of #f(x)#:

#f(x)=sin^2 x-sin 2x#

#f '(x)=2*sin x*cos x*d/dx(x) - cos 2x*d/dx(2x)#

#f '(x)=2*sin x*cos x - cos 2x*2#

#f' (x)=sin 2x-2*cos 2x#

compute slope #m# at #x=pi/4#

#m=f' (pi/4)=sin 2(pi/4)-2*cos 2(pi/4)#

#m=f' (pi/4)=sin (pi/2) - 2* cos (pi/2)#

#m=f' (pi/4) = 1-2(0)#

#m= 1#

Solve for the tangent liine using the POINT-SLOPE form:

#y-y_1=m*(x-x_1)#

#y-(-1/2)=1*(x-pi/4)#

#y+1/2=x-pi/4#

#y=x-pi/4-1/2#

#y=x-pi/4-2/4#

#y=x-(pi+2)/4# The required Tangent Line.