What is the exact value of sin((7pi)/12)-sin(pi/12)sin(7π12)sin(π12)?

1 Answer
Feb 13, 2015

sin( (7Pi)/12) − sin(Pi/12) = 1/sqrt(2)

One of the standard trig. formulas states:
sin x - sin y = 2 sin( (x - y)/2 ) cos( (x + y)/2 )

So
sin( (7Pi)/12) − sin(Pi/12)
= 2 sin( ((7Pi)/12 - (pi)/12)/2 ) cos( ((7Pi)/12 + (Pi)/12)/2 )
= 2 sin( Pi/4 ) cos( Pi/3 )

Since sin(Pi/4) = 1/( sqrt(2) )

and cos ( (2Pi)/3) = 1/2

2 sin( Pi/4 ) cos( (2Pi)/3 )
= (2) (1/(sqrt(2))) (1/2)
= 1/sqrt(2)

Therefore
sin( (7Pi)/12) − sin(Pi/12) = 1/sqrt(2)