What is the exact value of the following expression? cos (−5π/12)

Use the sum and difference identities to determine the exact value.

1 Answer
Jun 5, 2018

#-(sqrt(2 + sqrt3)/2)#

Explanation:

#cos ((-5pi)/12) = cos (pi/12 - pi) = - cos (pi/12)#
Find #cos (pi/12)# by using trig identity:'
#cos 2a = 2cos^2 a - 1#.
In this case
#cos 2a = cos (pi/6) = sqrt3/2#
#2cos^2 (pi/12) = 1 + sqrt3/2 = (2 + sqrt3)/2#
#cos^2 (pi/12) = (2 + sqrt3)/4#
#cos (pi/12) = sqrt(2 + sqrt3)/2# (because cos (pi/12) is positive)
Finally,
#cos ((-5pi)/12) = - cos (pi/12) = - sqrt(2 + sqrt3)/2#