What is the first derivative of (y)*(sqrt(x)) - (x)*(sqrt(y)) = 16(y)(x)(x)(y)=16?

1 Answer
May 16, 2017

dy/dx = (y(2sqrtx-1))/(x(2sqrty-1))dydx=y(2x1)x(2y1)

Explanation:

Differentiate both sides of the equation with respect to xx:

d/dx(ysqrtx-xsqrty) = 0ddx(yxxy)=0

d/dx(ysqrtx) = d/dx(xsqrty) ddx(yx)=ddx(xy)

using the product rule:

y/(2sqrtx)+ dy/dx sqrtx = x/(2sqrty)dy/dx + sqrtyy2x+dydxx=x2ydydx+y

solving for dy/dxdydx:

dy/dx(sqrtx-x/(2sqrty)) = sqrty-y/(2sqrtx)dydx(xx2y)=yy2x

dy/dx((2sqrtxsqrty-x)/(2sqrty)) = (2sqrtxsqrty-y)/(2sqrtx)dydx(2xyx2y)=2xyy2x

dy/dx = ((2sqrtxsqrty-y)/(2sqrtx))((2sqrty)/(2sqrtxsqrty-x))dydx=(2xyy2x)(2y2xyx)

dy/dx = ((2ysqrtx-y)/(2xsqrty-x))dydx=(2yxy2xyx)

dy/dx = (y(2sqrtx-1))/(x(2sqrty-1))dydx=y(2x1)x(2y1)