What is the first derivative of #(y)*(sqrt(x)) - (x)*(sqrt(y)) = 16#?

1 Answer
May 16, 2017

#dy/dx = (y(2sqrtx-1))/(x(2sqrty-1))#

Explanation:

Differentiate both sides of the equation with respect to #x#:

#d/dx(ysqrtx-xsqrty) = 0#

#d/dx(ysqrtx) = d/dx(xsqrty) #

using the product rule:

#y/(2sqrtx)+ dy/dx sqrtx = x/(2sqrty)dy/dx + sqrty#

solving for #dy/dx#:

#dy/dx(sqrtx-x/(2sqrty)) = sqrty-y/(2sqrtx)#

#dy/dx((2sqrtxsqrty-x)/(2sqrty)) = (2sqrtxsqrty-y)/(2sqrtx)#

#dy/dx = ((2sqrtxsqrty-y)/(2sqrtx))((2sqrty)/(2sqrtxsqrty-x))#

#dy/dx = ((2ysqrtx-y)/(2xsqrty-x))#

#dy/dx = (y(2sqrtx-1))/(x(2sqrty-1))#