What is the first term in a geometric series with ten terms a common ratio of 0.5, and a sum of 511.5?

1 Answer
May 3, 2017

256

Explanation:

The general term of a geometric series is given by the formula:

a_n = ar^(n-1)

where a is the initial term and r the common ratio.

Note that:

(1-r) sum_(n=1)^N a_n = sum_(n=1)^N ar^(n-1) - r sum_(n=1)^N ar^(n-1)

color(white)((1-r) sum_(n=1)^N a_n) = sum_(n=1)^N ar^(n-1) - sum_(n=2)^(N+1) ar^(n-1)

color(white)((1-r) sum_(n=1)^N a_n) = a+color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - ar^N

color(white)((1-r) sum_(n=1)^N a_n) = a(1-r^N)

Dividing both ends by (1-r), we find:

sum_(n=1)^N a_n = (a(1-r^N))/(1-r)

In our example, we have r=1/2, N=10 and:

1023/2 = 511.5 = sum_(n=1)^10 a_n = (a(1-(color(blue)(1/2))^color(blue)(10)))/(1-color(blue)(1/2)) = 2a(1-1/1024)

=2a(1023/1024) = 1023/2*a/256

Hence a=256