What is the first term in a geometric series with ten terms a common ratio of 0.5, and a sum of 511.5?

1 Answer
May 3, 2017

#256#

Explanation:

The general term of a geometric series is given by the formula:

#a_n = ar^(n-1)#

where #a# is the initial term and #r# the common ratio.

Note that:

#(1-r) sum_(n=1)^N a_n = sum_(n=1)^N ar^(n-1) - r sum_(n=1)^N ar^(n-1)#

#color(white)((1-r) sum_(n=1)^N a_n) = sum_(n=1)^N ar^(n-1) - sum_(n=2)^(N+1) ar^(n-1)#

#color(white)((1-r) sum_(n=1)^N a_n) = a+color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - ar^N#

#color(white)((1-r) sum_(n=1)^N a_n) = a(1-r^N)#

Dividing both ends by #(1-r)#, we find:

#sum_(n=1)^N a_n = (a(1-r^N))/(1-r)#

In our example, we have #r=1/2#, #N=10# and:

#1023/2 = 511.5 = sum_(n=1)^10 a_n = (a(1-(color(blue)(1/2))^color(blue)(10)))/(1-color(blue)(1/2)) = 2a(1-1/1024)#

#=2a(1023/1024) = 1023/2*a/256#

Hence #a=256#