What is the first term in a geometric series with ten terms a common ratio of 0.5, and a sum of 511.5?
1 Answer
Explanation:
The general term of a geometric series is given by the formula:
#a_n = ar^(n-1)#
where
Note that:
#(1-r) sum_(n=1)^N a_n = sum_(n=1)^N ar^(n-1) - r sum_(n=1)^N ar^(n-1)#
#color(white)((1-r) sum_(n=1)^N a_n) = sum_(n=1)^N ar^(n-1) - sum_(n=2)^(N+1) ar^(n-1)#
#color(white)((1-r) sum_(n=1)^N a_n) = a+color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - ar^N#
#color(white)((1-r) sum_(n=1)^N a_n) = a(1-r^N)#
Dividing both ends by
#sum_(n=1)^N a_n = (a(1-r^N))/(1-r)#
In our example, we have
#1023/2 = 511.5 = sum_(n=1)^10 a_n = (a(1-(color(blue)(1/2))^color(blue)(10)))/(1-color(blue)(1/2)) = 2a(1-1/1024)#
#=2a(1023/1024) = 1023/2*a/256#
Hence