What is the greater: 1000^(1000) or 1001^(999)?

3 Answers
Sep 6, 2016

1000^1000 > 1001^999

Explanation:

Considering the equation

1000^1000=1001^x

if x > 999

then

1000^1000 > 1001^999

else

1000^1000 < 1001^999

Appliying the log transformation to both sides.

1000 log 1000=x log 1001

but

log 1001 = log1000+1/1000xx1-1/(2!)1/1000^2xx1^2+2/(3!)1/1000^3xx1^3 +cdots+1/(n!)(d/(dx)log x)_(x=1000)1^n.

This series is alternate and rapidly convergent so

log1001 approx log1000+1/1000

Substituting in

x = 1000 log1000/(log1000+1/1000)=1000(3000/3001)

but 3000/3001 = 0.999667 so

x = 999.667 > 999 then

1000^1000 > 1001^999

Sep 6, 2016

Here's an alternative solution using the binomial theorem to prove:

1001^999 < 1000^1000

Explanation:

By the binomial theorem:

(1+1/1000)^999 = 1/(0!) + 999/(1!)1/1000 + (999*998)/(2!)1/1000^2 + (999*998*997)/(3!) 1/1000^3 + ... + (999!)/(999!) 1/1000^999

< 1/(0!) + 1/(1!) + 1/(2!) + 1/(3!) +... = e ~~ 2.718

So:

1001^999 = (1001/1000 * 1000) ^ 999

color(white)(1001^999) = (1+1/1000)^999 * 1000^999

color(white)(1001^999) < e*1000^999 < 1000*1000^999 = 1000^1000

Sep 7, 2016

1000^1000 > 1001^999

Explanation:

#Use log 1000=log 10^3=3 and log 1001=3.0004340...

Here, the logarithms of the two are

log( 1000 ^ 1000)=1000 log1000= (1000)(3) = 3000 and

log 1001^999= (999)(3.0004340...)=2997.4...

As log is an increasing function,

1000^1000 > 1001^999.