What is the half-life of the substance if a sample of a radioactive substance decayed to 97.5% of its original amount after a year? (b) How long would it take the sample to decay to 80% of its original amount? _______years??

1 Answer
Mar 29, 2015

(a). t_(1/2)=27.39"a"t12=27.39a

(b). t=8.82"a"t=8.82a

N_t=N_0e^(-lambda t)Nt=N0eλt

N_t=97.5Nt=97.5

N_0=100N0=100

t=1t=1

So:

97.5=100e^(-lambda.1)97.5=100eλ.1

e^(-lambda)=(97.5)/(100)eλ=97.5100

e^(lambda)=(100)/(97.5)eλ=10097.5

lne^(lambda)=ln((100)/(97.5))lneλ=ln(10097.5)

lambda=ln((100)/(97.5))λ=ln(10097.5)

lambda=ln(1.0256)=0.0253"/a"λ=ln(1.0256)=0.0253/a

t_((1)/(2))=0.693/lambdat12=0.693λ

t_((1)/(2))=0.693/0.0253=color(red)(27.39"a")t12=0.6930.0253=27.39a

Part (b):

N_t=80Nt=80

N_0=100N0=100

So:

80=100e^(-0.0253t)80=100e0.0253t

80/100=e^(-0.0235t)80100=e0.0235t

100/80=e^(0.0253t)=1.2510080=e0.0253t=1.25

Taking natural logs of both sides:

ln(1.25)=0.0253tln(1.25)=0.0253t

0.223=0.0253t0.223=0.0253t

t=0.223/0.0253=color(red)(8.82"a")t=0.2230.0253=8.82a