(a). t_(1/2)=27.39"a"t12=27.39a
(b). t=8.82"a"t=8.82a
N_t=N_0e^(-lambda t)Nt=N0e−λt
N_t=97.5Nt=97.5
N_0=100N0=100
t=1t=1
So:
97.5=100e^(-lambda.1)97.5=100e−λ.1
e^(-lambda)=(97.5)/(100)e−λ=97.5100
e^(lambda)=(100)/(97.5)eλ=10097.5
lne^(lambda)=ln((100)/(97.5))lneλ=ln(10097.5)
lambda=ln((100)/(97.5))λ=ln(10097.5)
lambda=ln(1.0256)=0.0253"/a"λ=ln(1.0256)=0.0253/a
t_((1)/(2))=0.693/lambdat12=0.693λ
t_((1)/(2))=0.693/0.0253=color(red)(27.39"a")t12=0.6930.0253=27.39a
Part (b):
N_t=80Nt=80
N_0=100N0=100
So:
80=100e^(-0.0253t)80=100e−0.0253t
80/100=e^(-0.0235t)80100=e−0.0235t
100/80=e^(0.0253t)=1.2510080=e0.0253t=1.25
Taking natural logs of both sides:
ln(1.25)=0.0253tln(1.25)=0.0253t
0.223=0.0253t0.223=0.0253t
t=0.223/0.0253=color(red)(8.82"a")t=0.2230.0253=8.82a