What is the implicit derivative of 1= e^y-xcos(xy) ?

1 Answer
Oct 12, 2016

(dy)/dx=(cosxy-xysinxy)/(e^y+x^2(sinxy))

Explanation:

1=e^y−xcos(xy)
rArr(d1)/dx=d/dx(e^y−xcos(xy))
rArr0=(de^y)/dx-(d(xcos(xy)))/dx
rArr0=(dy/dx)e^y-(((dx)/dx)cosxy+x(dcosxy)/dx)
rArr0=(dy/dx)e^y-(cosxy+x(dxy)/dx(-sinxy))
rArr0=(dy/dx)e^y-(cosxy+x((y+x(dy)/dx)(-sinxy)))
rArr0=(dy/dx)e^y-(cosxy+x(-ysinxy-x(dy)/dx(sinxy)))
rArr0=(dy/dx)e^y-(cosxy-xysinxy-x^2(dy)/dx(sinxy))
rArr0=(dy/dx)e^y-cosxy+xysinxy+x^2(dy)/dx(sinxy)
rArr0=(dy/dx)e^y+x^2(dy)/dx(sinxy)-cosxy+xysinxy
rArr0=(dy/dx)(e^y+x^2(sinxy))-cosxy+xysinxy
rArrcosxy-xysinxy=(dy/dx)(e^y+x^2(sinxy))

rArr(dy)/dx=(cosxy-xysinxy)/(e^y+x^2(sinxy))