What is the implicit derivative of #1= xye^y-xcos(xy) #?

1 Answer
Jul 16, 2016

#(dy)/(dx) = (cos(xy) - xysin(xy) - ye^y)/(xe^y+xye^y+x^2sin(xy))#

Explanation:

#d/(dx)(1) = d/(dx)(xye^y) - d/(dx)(xcos(xy))#

To do these derivatives, remember #d/(dx)(y) = (dy)/(dx)# and hammer your product and chain rules.

#0 = ye^y + x(dy)/(dx)e^y + xy(dy)/(dx)e^y - cos(xy) + x(y+x(dy)/(dx))sin(xy)#

#(dy)/(dx)(xe^y+xye^y+x^2sin(xy)) = cos(xy) - xysin(xy) - ye^y#

#(dy)/(dx) = (cos(xy) - xysin(xy) - ye^y)/(xe^y+xye^y+x^2sin(xy))#