d/(dx)(1) = d/(dx)(xye^y) - d/(dx)(xcos(xy))ddx(1)=ddx(xyey)−ddx(xcos(xy))
To do these derivatives, remember d/(dx)(y) = (dy)/(dx)ddx(y)=dydx and hammer your product and chain rules.
0 = ye^y + x(dy)/(dx)e^y + xy(dy)/(dx)e^y - cos(xy) + x(y+x(dy)/(dx))sin(xy)0=yey+xdydxey+xydydxey−cos(xy)+x(y+xdydx)sin(xy)
(dy)/(dx)(xe^y+xye^y+x^2sin(xy)) = cos(xy) - xysin(xy) - ye^ydydx(xey+xyey+x2sin(xy))=cos(xy)−xysin(xy)−yey
(dy)/(dx) = (cos(xy) - xysin(xy) - ye^y)/(xe^y+xye^y+x^2sin(xy))dydx=cos(xy)−xysin(xy)−yeyxey+xyey+x2sin(xy)