What is the integral of #int tan^2(3x)dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Bio Jan 17, 2016 #int tan^2(3x) dx = 1/3 tan(3x) - x + C# where #C# is the constant of integration Explanation: You should know the identity #tan^2theta-=sec^2theta-1#. #int tan^2(3x) dx = int (sec^2(3x)-1) dx# #= 1/3 tan(3x) - x + C# where #C# is the constant of integration. Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 17718 views around the world You can reuse this answer Creative Commons License