What is the integral of sin(x)cos(x)?

1 Answer

It's 12sin2(x)+C.

The substitution used to solve this integral is simple.

Note that cos(x) is the derivative of sin(x).

Define the variable u=sin(x).
We have du=cos(x)dx.
So, dx=1cos(x)du.

The integral:

sin(x)cos(x)dx=ucos(x)cos(x)du=udu

Knowing that ddu[12u2+C]=u we have:

udu=ddu[12u2+C]du

Using the Fundamental Theorem of Calculus we get:

ddu[12u2+C]du=12u2+C=12sin2(x)+C