What is the integral of x/(1+x^2)x1+x2?

1 Answer
Nov 21, 2016

intx/(x^2+1)dx=1/2ln(x^2+1)+Cxx2+1dx=12ln(x2+1)+C

Explanation:

Let u(x)=1+x^2" "u(x)=1+x2 then " "du(x) =2xdx du(x)=2xdx
" "
color(blue)((d(u(x)))/2=xdx)d(u(x))2=xdx
" "
Start solving the integral.
" "
intx/(x^2+1)dxxx2+1dx
" "
=intcolor(blue)((d(u(x)))/(2u(x))=d(u(x))2u(x)
" "
=1/2int(du(x))/(u(x))=12du(x)u(x)
" "
=1/2lnabs(u(x))+C=12ln|u(x)|+C
" "
=1/2lnabs(x^2+1)+C=12lnx2+1+C
" "
Because x^2+1>0 " " then " " abs(x^2+1)=x^2+1x2+1>0 then x2+1=x2+1
" "
Therefore,
" "
intx/(x^2+1)dx=1/2ln(x^2+1)+Cxx2+1dx=12ln(x2+1)+C