What is the integration of dxx.x3+4??

1 Answer
Mar 7, 2018

16lnx3+42x3+4+2+C

Explanation:

Substitute x3+4=u2. Then 3x2dx=2udu, so that

dxxx3+4=2udu3x3u=23duu24=16(duu2duu+2)

Thus

dxxx3+4=16(duu2duu+2)=16lnu2u+2+C
=16lnx3+42x3+4+2+C