What is the limit of ((1/x)-((1)/(e^(x)-1)) as x approaches 0^+?
1 Answer
Aug 6, 2017
# lim_(x rarr 0^+) 1/x-(1)/(e^x-1) = 1/2#
Explanation:
Let:
# f(x) = 1/x-(1)/(e^x-1) #
# " " = ((e^x-1) - (x)) / (x(e^x-1))#
# " " = (e^x-1 - x) / (xe^x-x)#
Then we seek:
# L = lim_(x rarr 0^+) f(x) #
# \ \ = lim_(x rarr 0^+) (e^x-1 - x) / (xe^x-x) #
As this is of an indeterminate form
# L = lim_(x rarr 0^+) (d/dx(e^x-1 - x)) / (d/dx(xe^x-x)) #
# \ \ = lim_(x rarr 0^+) (e^x-1) / (xe^x+e^x - 1) #
Again, this is of an indeterminate form
# L = lim_(x rarr 0^+) (d/dx(e^x-1)) / (d/dx(xe^x+e^x - 1)) #
# \ \ = lim_(x rarr 0^+) (e^x) / (xe^x+e^x+e^x) #
# \ \ = (e^0) / (0+e^0+e^0) #
# \ \ = 1/2 #