What is #lim_(xto0^+) ((1/x)-((1)/(e^(x)-1)))#?

1 Answer
Jun 13, 2017

#lim_(x->0^+) (1/x-1/(e^x-1)) =1/2#

Explanation:

Sum the two terms:

#1/x-1/(e^x-1) = (x-e^x+1)/(x(e^x-1))#

The limit is now in the indeterminate form #0/0# so we can now apply l'Hospital's rule:

#lim_(x->0^+) (1/x-1/(e^x-1)) = lim_(x->0^+) (d/dx (e^x+1-x))/(d/dx x(e^x-1))#

#lim_(x->0^+) (1/x-1/(e^x-1)) = lim_(x->0^+) (e^x-1)/(e^x-1+ xe^x)#

and as this is till in the form #0/0# a second time:

#lim_(x->0^+) (1/x-1/(e^x-1)) = lim_(x->0^+) (d/dx (e^x-1))/(d/dx (e^x-1+ xe^x))#

#lim_(x->0^+) (1/x-1/(e^x-1)) = lim_(x->0^+) e^x/(e^x +xe^x+ e^x)#

#lim_(x->0^+) (1/x-1/(e^x-1)) = lim_(x->0^+) 1/(x+2) = 1/2#

graph{1/x-1/(e^x-1) [-10, 10, -5, 5]}