Sum the two terms:
1/x-1/(e^x-1) = (x-e^x+1)/(x(e^x-1))
The limit is now in the indeterminate form 0/0 so we can now apply l'Hospital's rule:
lim_(x->0^+) (1/x-1/(e^x-1)) = lim_(x->0^+) (d/dx (e^x+1-x))/(d/dx x(e^x-1))
lim_(x->0^+) (1/x-1/(e^x-1)) = lim_(x->0^+) (e^x-1)/(e^x-1+ xe^x)
and as this is till in the form 0/0 a second time:
lim_(x->0^+) (1/x-1/(e^x-1)) = lim_(x->0^+) (d/dx (e^x-1))/(d/dx (e^x-1+ xe^x))
lim_(x->0^+) (1/x-1/(e^x-1)) = lim_(x->0^+) e^x/(e^x +xe^x+ e^x)
lim_(x->0^+) (1/x-1/(e^x-1)) = lim_(x->0^+) 1/(x+2) = 1/2
graph{1/x-1/(e^x-1) [-10, 10, -5, 5]}