What is the limit of # (sinx)(ln4x)# as x approaches 0? Calculus Limits Determining Limits Algebraically 1 Answer Eddie Sep 9, 2016 0 Explanation: when written as #lim_(x to 0) (ln 4x)/(1/(sin x))# this is #oo/oo# indeterminate so we can use L'Hopital's Rule #= lim_(x to 0) (1/x)/(- cscx cot x)# #= - lim_(x to 0) sin x tan x * (1/x)# using well known limit:# lim_(z to 0) (sin z)/z = 1# #= - lim_(x to 0) (sin x)/x lim_(x to 0) tan x # #= - 1 * 0 = 0# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 9084 views around the world You can reuse this answer Creative Commons License