What is the limit of #sqrt(x^2+8x-5)-sqrt(x^2-6x+2)# as x approaches infinity? Calculus Limits Determining Limits Algebraically 1 Answer Cesareo R. Aug 24, 2016 #7# Explanation: #(sqrt(x^2+8x-5)-sqrt(x^2-6x+2))(sqrt(x^2+8x-5)+sqrt(x^2-6x+2))/(sqrt(x^2+8x-5)+sqrt(x^2-6x+2)) =# #=(x^2+8x-5-(x^2-6x+2))/(sqrt(x^2+8x-5)+sqrt(x^2-6x+2))=# #=(14x-7)/(sqrt(x^2+8x-5)+sqrt(x^2-6x+2)) =# #=(14x-7)/(x(sqrt(1+8/x-5/x^2)+sqrt(1-6/x+2/x^2))) =# #(14-7/x)/(sqrt(1+8/x-5/x^2)+sqrt(1-6/x+2/x^2))# Finally #lim_{x->oo}(sqrt(x^2+8x-5)-sqrt(x^2-6x+2))=14/2=7# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 3717 views around the world You can reuse this answer Creative Commons License