What is the limit of this function as h approaches 0? (h)/(sqrt(4+h)-2)h4+h2

is this zero or undefined?

2 Answers
Jun 2, 2018

Lt_(h->o)(h)/(sqrt(4+h)-2)Lthoh4+h2

=Lt_(h->o)(h(sqrt(4+h)+2))/((sqrt(4+h)-2)(sqrt(4+h)+2)=Lthoh(4+h+2)(4+h2)(4+h+2)

=Lt_(h->o)(h(sqrt(4+h)+2))/(4+h-4)=Lthoh(4+h+2)4+h4

=Lt_(h->o)(cancelh(sqrt(4+h)+2))/cancelh " as "h!=0

=(sqrt(4+0)+2)=2+2=4

Jun 6, 2018

4.

Explanation:

Recall that, lim_(h to 0)(f(a+h)-f(a))/h=f'(a)............(ast).

Let, f(x)=sqrtx," so that, "f'(x)=1/(2sqrtx).

:. f'(4)=1/(2sqrt4)=1/4.

But, f'(4)=lim_(h to 0)(sqrt(4+h)-sqrt4)/h............[because, (ast)].

:. lim_(h to 0)(sqrt(4+h)-sqrt4)/h=1/4.

:." The Reqd. Lim."=1/(1/4)=4.

Enjoy Maths.!