What is the norm of #<1,-3,-2 >#?
1 Answer
Apr 1, 2016
Let
#\mathbf(|| vecv || = sqrt(vecvcdotvecv))#
#= sqrt(<< 1,-3,-2 >>cdot<< 1,-3,-2 >>)#
#= sqrt(1cdot1 + (-3)cdot(-3) + (-2)cdot(-2))#
#= sqrt(1^2 + (-3)^2 + (-2)^2)#
#= sqrt(1 + 9 + 4)#
#= color(blue)(sqrt(13))#
This tells us that the vector has a length of
Given that information, can you find the norm of