What is the norm or #<-7 ,6,-1 >#?

1 Answer
Jun 11, 2016

#sqrt86#

Explanation:

Let #x=(x_1,x_2,....,x_n)# be any vector in an n-dimensional vector space X.
Then the norm of #x# is given by

#||x||=sqrt(x_1^2+x_2^2+.....+x_n^2)#.

So in this particular case we work in a 3-dimesnional vector space and get that

#||(-7;6;1)||=sqrt((-7)^2+6^2+(-1)^2#

#=sqrt86#