What is the number of distinct primes dividing 12! + 13! +14! ?

2 Answers
Nov 9, 2016

2,3,5,7,112,3,5,7,11

Explanation:

12!+13!+14! =12!(1+13+13 xx 14)12!+13!+14!=12!(1+13+13×14)

The primes in 12!12! are

2,3,5,7,112,3,5,7,11

and the primes in (1+13+13 xx 14)(1+13+13×14) are

2,72,7

so the primes dividing 12!+13!+14! 12!+13!+14!

are

2,3,5,7,112,3,5,7,11

Jul 11, 2017

Five distinct primes divide 12!+13!+14!12!+13!+14! and these are {2,3,5,7,11}{2,3,5,7,11}

Explanation:

12!+13!+14!12!+13!+14!

= 12!(1+13+14xx13)12!(1+13+14×13)

= 12!(14xx14)12!(14×14)

= 12xx11xx10xx9xx8xx7xx6xx5xx4xx3xx2xx14xx1412×11×10×9×8×7×6×5×4×3×2×14×14

= ul(2xx2xx3)xx11xxul(2xx5)xxul(3xx3)xxul(2xx2xx2)xx7xxul(2xx3)xx5xxul(2xx2)xx3xx2xxul(2xx7)xxul(2xx7)

= 2^12xx3^5xx5^2xx7^3xx11

Hence, five distinct primes divide 12!+13!+14! and these are {2,3,5,7,11}