What is int tan^-1 x dx ∫tan−1xdx?
1 Answer
Feb 20, 2018
I=tan^-1(x)x-1/2ln(x^2+1)+CI=tan−1(x)x−12ln(x2+1)+C
Explanation:
We want to solve
I=inttan^-1(x)dxI=∫tan−1(x)dx
Use integration by parts / partial integration
intudv=uv-intvdu∫udv=uv−∫vdu
Let
Then
I=tan^-1(x)x-intx/(x^2+1)dxI=tan−1(x)x−∫xx2+1dx
Make a substitution
I=tan^-1(x)x-1/2int1/(u)duI=tan−1(x)x−12∫1udu
=tan^-1(x)x-1/2ln(u)+C=tan−1(x)x−12ln(u)+C
Substitute back
I=tan^-1(x)x-1/2ln(x^2+1)+CI=tan−1(x)x−12ln(x2+1)+C