What is int tan^-1 x dx tan1xdx?

1 Answer
Feb 20, 2018

I=tan^-1(x)x-1/2ln(x^2+1)+CI=tan1(x)x12ln(x2+1)+C

Explanation:

We want to solve

I=inttan^-1(x)dxI=tan1(x)dx

Use integration by parts / partial integration

intudv=uv-intvduudv=uvvdu

Let u=tan^-1(x)u=tan1(x) and dv=1dxdv=1dx

Then du=1/(x^2+1)dxdu=1x2+1dx and v=xv=x

I=tan^-1(x)x-intx/(x^2+1)dxI=tan1(x)xxx2+1dx

Make a substitution u=x^2+1=>(du)/dx=2xu=x2+1dudx=2x

I=tan^-1(x)x-1/2int1/(u)duI=tan1(x)x121udu

=tan^-1(x)x-1/2ln(u)+C=tan1(x)x12ln(u)+C

Substitute back u=x^2+1u=x2+1

I=tan^-1(x)x-1/2ln(x^2+1)+CI=tan1(x)x12ln(x2+1)+C