What is the period of #f(t)=cos ( ( 7 t ) / 2 ) #?

2 Answers
May 16, 2016

#(4pi)/7#.

Explanation:

The period for both sin kt and cos kt is (2pi)/k.

Here, k = = #7/2#. So, the period is #4pi)/7.#.

See below how it works

#cos ((7/2)(t+(4pi)/7))=cos((7t)/2+2pi)=cos((7t)/2)#

May 16, 2016

#T=(4pi)/7#

Explanation:

enter image source here

#y=A*cos(omega*t+phi)" general equation"#

#"A:Amplitude"#

#omega:"Angular velocity"#

#phi="phase angle"#

#"your equation:" f(t)=cos((7t)/2)#

#A=1#

#omega=7/2#

#phi=0#

#omega=(2pi)/T" T:Period"#

#7/2=(2pi)/T#

#T=(4pi)/7#