A periodic function is such that
#f(x)=f(x+T)#
where #T# is the period
Therefore,
#sin(7/24t)=sin(7/24(t+T))#
#=sin(7/24t+7/24T)#
#=sin(7/24t)cos(7/24T)+sin(7/24T)cos(7/24t)#
Comparing the #LHS# and the #RHS#
#{(cos(7/24T)=1),(sin(7/24T)cos(7/24t)=0):}#
#<=>#, #{(7/24T=14pi):}#
#T=48pi#
#sin(t/2)=sin(1/2(t+T))#
#=sin(1/2t+1/2T)#
#=sin(t/2)cos(T/2)+sin(T/2)cos(t/2)#
Comparing the #LHS# and the #RHS#
#{(cos(T/2)=1),(sin(T/2)cos(t/2)=0):}#
#<=>#, #{(T/2=2pi),(T/2=0):}#
#T=4pi#
The #LCM# of #4pi "and" 48pi# is #=48pi#