A periodic function is such that
f(x)=f(x+T)f(x)=f(x+T)
where TT is the period
Therefore,
sin(7/24t)=sin(7/24(t+T))sin(724t)=sin(724(t+T))
=sin(7/24t+7/24T)=sin(724t+724T)
=sin(7/24t)cos(7/24T)+sin(7/24T)cos(7/24t)=sin(724t)cos(724T)+sin(724T)cos(724t)
Comparing the LHSLHS and the RHSRHS
{(cos(7/24T)=1),(sin(7/24T)cos(7/24t)=0):}
<=>, {(7/24T=14pi):}
T=48pi
sin(t/2)=sin(1/2(t+T))
=sin(1/2t+1/2T)
=sin(t/2)cos(T/2)+sin(T/2)cos(t/2)
Comparing the LHS and the RHS
{(cos(T/2)=1),(sin(T/2)cos(t/2)=0):}
<=>, {(T/2=2pi),(T/2=0):}
T=4pi
The LCM of 4pi "and" 48pi is =48pi