What is the period of f(x)=0.5sin(x)cos(x)f(x)=0.5sin(x)cos(x)?

1 Answer
Mar 8, 2018

Period = piPeriod=π

Explanation:

f(x) = y = 0.5 sin x cos xf(x)=y=0.5sinxcosx

y = (1/2) (2sin x cos x) / 2y=(12)2sinxcosx2

y = (1/4) sin 2xy=(14)sin2x

It’s in the form y = a sin (bx + c) + dy=asin(bx+c)+d where,

a = 1/4, b = 2, c = d = 0a=14,b=2,c=d=0

Amplitude = a = (1/4)=a=(14)

Period = (2pi) / |b| = (2pi) / 2 = pi=2π|b|=2π2=π

graph{0.5 (sin (x) cos (x)) [-10, 10, -5, 5]}