What is the projection of <0, 1, 3> onto <3, 2, 1>?

1 Answer
Apr 22, 2017

The vector projection, mathbf p, of mathbfa on mathbfb is:

mathbf p = ( mathbf a cdot mathbf(hatb) )\ mathbf (hatb) = (abs(mathbf a) abs( mathbf(hatb)) cos theta) \ mathbf (hatb)

implies mathbf p = (abs(mathbf a) cos theta) \ mathbf (hatb

Now:

mathbf a cdot mathbf b = abs(mathbf a) abs( mathbf b) cos theta

implies cos theta = (mathbf a cdot mathbf b)/( abs(mathbf a) abs( mathbf b))

implies mathbf p = abs(mathbf a) (mathbf a cdot mathbf b)/( abs(mathbf a) abs( mathbf b)) mathbf (hatb

= (mathbf a cdot mathbf b)/( abs( mathbf b)) ( mathbf b)/( abs( mathbf b))

= (mathbf a cdot mathbf b)/( abs( mathbf b)^2) mathbf b

= (langle 0,1,3 rangle cdot langle3,2,1 rangle)/( 3^2 + 2^2 + 1^2) langle3,2,1 rangle

= (5)/(14) langle3,2,1 rangle