What is the projection of < 2 , -6, 0><2,6,0> onto < 5, -3, 8><5,3,8>?

1 Answer
May 5, 2016

Let veca = << 2,-6,0 >>a=2,6,0 and vecb = << 5,-3,8 >>b=5,3,8.

The projection of vecaa onto vecbb is written as:

\mathbf("proj"_(vecb)veca = (vecacdotvecb)/(||vecb||cdot||vecb||)vecb)

So first, we have to find the dot product between veca and vecb.

color(green)(vecacdotvecb)

= << 2,-6,0 >> cdot << 5,-3,8 >>

= 2*5 + -6*-3 + 0*8

= 10 + 18 = color(green)(28)

And the norm of vecb is:

color(green)(||vecb||)

= sqrt(vecbcdotvecb)

= sqrt(<< 5,-3,8 >>cdot<< 5,-3,8 >>)

= sqrt(5*5+ -3*-3+8*8)

= sqrt(25+9+64)

= sqrt(98) = color(green)(7sqrt2)

Thus, the projection of veca onto vecb is:

color(blue)("proj"_(vecb)veca)

= 28/(7sqrt2*7sqrt2)<< 5,-3,8 >>

= 28/98<< 5,-3,8 >>

= 2/7<< 5,-3,8 >>

= color(blue)(<< 10/7,-6/7,16/7 >>) <-- let this be vecc.

At this point, to check that this worked, you should perform the following to determine whether the angle between the vectors is indeed 0^@:

vecb cdot vecc = ||vecb||cdot||vecc||costheta

color(blue)(theta) = arccos((vecbcdotvecc)/(||vecb||cdot||vecc||))

= arccos((5*10/7 + -3*-6/7 + 8*16/7)/(sqrt(5^2 + (-3)^2 + 8^2)*sqrt((10/7)^2 + (-6/7)^2 + (16/7)^2)))

= arccos(((50 + 18 + 128)/7)/(7sqrt2*sqrt((100+36+256)/49)))

= arccos(((196)/7)/(7sqrt2*sqrt8))

= arccos((28)/(28))

= color(blue)(0^@)