What is the projection of < 2 , -6, 0><2,−6,0> onto < 5, -3, 8><5,−3,8>?
1 Answer
Let
The projection of
\mathbf("proj"_(vecb)veca = (vecacdotvecb)/(||vecb||cdot||vecb||)vecb)
So first, we have to find the dot product between
color(green)(vecacdotvecb)
= << 2,-6,0 >> cdot << 5,-3,8 >>
= 2*5 + -6*-3 + 0*8
= 10 + 18 = color(green)(28)
And the norm of
color(green)(||vecb||)
= sqrt(vecbcdotvecb)
= sqrt(<< 5,-3,8 >>cdot<< 5,-3,8 >>)
= sqrt(5*5+ -3*-3+8*8)
= sqrt(25+9+64)
= sqrt(98) = color(green)(7sqrt2)
Thus, the projection of
color(blue)("proj"_(vecb)veca)
= 28/(7sqrt2*7sqrt2)<< 5,-3,8 >>
= 28/98<< 5,-3,8 >>
= 2/7<< 5,-3,8 >>
= color(blue)(<< 10/7,-6/7,16/7 >>) <-- let this bevecc .
At this point, to check that this worked, you should perform the following to determine whether the angle between the vectors is indeed
vecb cdot vecc = ||vecb||cdot||vecc||costheta
color(blue)(theta) = arccos((vecbcdotvecc)/(||vecb||cdot||vecc||))
= arccos((5*10/7 + -3*-6/7 + 8*16/7)/(sqrt(5^2 + (-3)^2 + 8^2)*sqrt((10/7)^2 + (-6/7)^2 + (16/7)^2)))
= arccos(((50 + 18 + 128)/7)/(7sqrt2*sqrt((100+36+256)/49)))
= arccos(((196)/7)/(7sqrt2*sqrt8))
= arccos((28)/(28))
= color(blue)(0^@)